LM837

Low Noise Quad Operational Amplifier

General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600Ω load, making it ideal for almost all digital audio, graphic equalizer preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration.
The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Features

- High slew rate
$10 \mathrm{~V} / \mu \mathrm{s}$ (typ); $8 \mathrm{~V} / \mu \mathrm{s}$ (min) 25 MHz (typ); 15 MHz (min)
- Power bandwidth
- High output current
- Excellent output drive performance
- Low input noise voltage
- Low total harmonic distortion
- Low offset voltage

200 kHz (typ)
$\pm 40 \mathrm{~mA}$
$>600 \Omega$
$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
0.0015%
0.3 mV

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage, VID (Note	
2)	$\pm 30 \mathrm{~V}$
Common Mode Input Voltage, V_{IC}	
(Note 2)	$\pm 15 \mathrm{~V}$
Power Dissipation, P_{D} (Note 3)	$1.2 \mathrm{~W}(\mathrm{~N})$
	$830 \mathrm{~mW}(\mathrm{M})$
Operating Temperature Range, $\mathrm{T}_{\mathrm{OPR}}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range, $\mathrm{T}_{\text {STG }} \quad-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Soldering Information

Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase $(60$ seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

ESD rating to be determined.
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.3	5	mV
I_{OS}	Input Offset Current			10	200	nA
I_{B}	Input Bias Current			500	1000	nA
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$	90	110		dB
$\mathrm{~V}_{\mathrm{OM}}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13.5		V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 10	± 12.5		V
$\mathrm{~V}_{\mathrm{CM}}$	Common Mode Input Voltage		± 12	± 14.0		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=15 \sim 5,-15 \sim-5$	80	100	dB	
I_{S}	Power Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, Four Amps		10	15	mA

AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	8	10		$\mathrm{~V} / \mathrm{ss}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	15	25		MHz

Design Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Note 4)

Symbol	Parameter	Condition	Min	Typ	Max	Units
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}_{\text {P-P }}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{THD}<1 \%$		200		kHz
$\mathrm{e}_{\mathrm{n} 1}$	Equivalent Input Noise Voltage	JIS A, $\mathrm{R}_{\text {S }}=100 \Omega$		0.5		$\mu \mathrm{V}$
$\mathrm{e}_{\mathrm{n} 2}$	Equivalent Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$		4.5		$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$		0.7		$\begin{aligned} & \mathrm{pA} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
THD	Total Harmonic Distortion	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=3 \mathrm{Vrms}, \\ & f=20 \sim 20 \mathrm{kHz}, R_{L}=600 \Omega \end{aligned}$		0.0015		\%
f_{u}	Zero Cross Frequency	Open Loop		12		MHz
ϕ_{m}	Phase Margin	Open Loop		45		deg
	Input-Referred Crosstalk	$\mathrm{f}=20 \sim 20 \mathrm{kHz}$		-120		dB
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Design Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.
Note 2: Unless otherwise specified the absolute maximum input voltage is equal to the power supply voltage.
Note 3: For operation at ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM837N, $90^{\circ} \mathrm{C} / \mathrm{W}$; LM837M, $150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: The following parameters are not tested or guaranteed.
Detailed Schematic

Physical Dimensions
inches (millimeters) unless otherwise noted

Molded Package (SO)
Order Number LM837M or LM837MX
NS Package Number M14A

